6.(2019·全国卷Ⅱ文,17)如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.
(1)证明:BE⊥平面EB1C1;
(2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积.
[解析] (1)证明:由已知得B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,故B1C1⊥BE.又BE⊥EC1,B1C1∩EC1=C1,
所以BE⊥平面EB1C1.
(2)解:由(1)知∠BEB1=90°.
由题设知Rt△ABE≌Rt△A1B1E,
所以∠AEB=∠A1EB1=45°,
故AE=AB=3,AA1=2AE=6.
如图,作EF⊥BB1,垂足为F,则EF⊥平面BB1C1C,且EF=AB=3.
所以四棱锥E-BB1C1C的体积V=
×3×6×3=18.

(2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积.
[解析] (1)证明:由已知得B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,故B1C1⊥BE.又BE⊥EC1,B1C1∩EC1=C1,
所以BE⊥平面EB1C1.
(2)解:由(1)知∠BEB1=90°.
由题设知Rt△ABE≌Rt△A1B1E,
所以∠AEB=∠A1EB1=45°,

如图,作EF⊥BB1,垂足为F,则EF⊥平面BB1C1C,且EF=AB=3.
所以四棱锥E-BB1C1C的体积V=
