26.在平面直角坐标系xOy中,抛物线y=ax2﹣4ax与x轴交于A,B两点(A在B的左侧). (1)求点A,B的坐标;

26.在平面直角坐标系xOy中,抛物线yax2﹣4axx轴交于AB两点(AB的左侧).
(1)求点AB的坐标;
(2)已知点C(2,1),P(1,﹣a),点Q在直线PC上,且Q点的横坐标为4.
①求Q点的纵坐标(用含a的式子表示);
②若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.
分析】(1)根据抛物线与x轴的相交时,y=0即可求点AB的坐标;
(2)①已知点C(2,1),P(1,﹣a),可得直线PC解析式,点Q在直线PC上,且Q点的横坐标为4.即可求Q点的纵坐标(用含a的式子表示);
②根据抛物线与线段PQ恰有一个公共点,结合函数图象,即可求a的取值范围.

解答】解:(1)令y=0,即0=ax2﹣4ax
解得x1=0,x2=4,
A(0,0),B(4,0).
答:点AB的坐标为:(0,0),(4,0);
(2)①设直线PC解析式为ykx+b
将点C(2,1),P(1,﹣a)代入解得:
k=1+ab=﹣3a﹣1,
∴直线PC解析式为y=(1+ax﹣3a﹣1,
x=4时,y=3a+3,
所以点Q的纵坐标为3a+3.
②∵当点QB上方或与点B重合时,抛物线与线段PQ恰有一个公共点,
3a+3≥0,∴a≥﹣1
∴当a<0时,抛物线开口向下,抛物线只【能与点Q相交,
∴﹣1≤a<0
a>0时,抛物线开口向上,只能与点P相交,
x=1时,y=﹣ay=﹣3a
所以抛物线与点P不相交.
综上:a的取值范围是:﹣1≤a<0
留言与评论(共有 0 条评论)
   
验证码: